47 research outputs found

    Do we need to reconsider the CMAM admission and discharge criteria?; an analysis of CMAM data in South Sudan

    Get PDF
    Background: Weight-for-height Z-score (WHZ) and Mid Upper Arm Circumference (MUAC) are both commonly used as acute malnutrition screening criteria. However, there exists disparity between the groups identified as malnourished by them. Thus, here we aim to investigate the clinical features and linkage with chronicity of the acute malnutrition cases identified by either WHZ or MUAC. Besides, there exists evidence indicating that fat restoration is disproportionately rapid compared to that of muscle gain in hospitalized malnourished children but related research at community level is lacking. In this study we suggest proxy measure to inspect body composition restoration responding to malnutrition management among the malnourished children. Methods: The data of this study is from World Vision South Sudan’s emergency nutrition program from 2006 to 2012 (4443 children) and the nutrition survey conducted in 2014 (3367 children). The study investigated clinical presentations of each type of severe acute malnutrition (SAM) by WHZ (SAM-WHZ) or MUAC (SAM-MUAC), and analysed correlation between each malnutrition and chronic malnutrition. Furthermore, we explored the pattern of body composition restoration during the recovery phase by comparing the relative velocity of MUAC3 with that of weight gain. Results: As acutely malnourished children identified by MUAC more often share clinical features related to chronic malnutrition and minimal overlapping with malnourished children by WHZ, Therefore, MUAC only screening in the nutrition program would result in delayed identification of the malnourished children. Conclusions: The relative velocity of MUAC3 gain was suggested as a proxy measure for volume increase, and it was more prominent than that of weight gain among the children with SAM by WHZ and MUAC over all the restoring period. Based on this we made a conjecture about dominant fat mass gain over the period of CMAM program. Also, considering initial weight gain could be ascribed to fat mass increase, the current discharge criteria would leave the malnourished children at risk of mortality even after treatment due to limited restoration of muscle mass. Given this, further research should be followed including assessment of body composition for evidence to recapitulate and reconsider the current admission and discharge criteria for CMAM program

    4-O-Carboxymethylascochlorin Inhibits Expression Levels of on Inflammation-Related Cytokines and Matrix Metalloproteinase-9 Through NF–ÎșB/MAPK/TLR4 Signaling Pathway in LPS-Activated RAW264.7 Cells

    Get PDF
    Toll-like receptor 4 (TLR4) and matrix metalloproteinase-9 (MMP-9) are known to play important roles in inflammatory diseases such as arteriosclerosis and plaque instability. The purpose of this study was to perform the effect of 4-O-carboxymethylascochlorin (AS-6) on MMP-9 expression in lipopolysaccharide (LPS)-induced murine macrophages and signaling pathway involved in its anti-inflammatory effect. Effect of AS-6 on MAPK/NF-ÎșB/TLR4 signaling pathway in LPS-activated murine macrophages was examined using ELISA, Western blotting, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence immunoassay. MMP-9 enzyme activity was examined by gelatin zymography. AS-6 significantly suppressed MMP-9 and MAPK/NF-ÎșB expression levels in LPS-stimulated murine macrophages. Expression levels of inducible nitric oxide synthase (iNOS), COX2, MMP-9, JNK, ERK, p38 phosphorylation, and NF-ÎșB stimulated by LPS were also decreased by AS-6. Moreover, AS-6 suppressed TLR4 expression and dysregulated LPS-induced activators of transcription signaling pathway. The results of this study showed that AS-6 can inhibit LPS-stimulated inflammatory response by suppressing TLR4/MAPK/NF-ÎșB signals, suggesting that AS-6 can be used to induce the stability of atherosclerotic plaque and prevent inflammatory diseases in an in vitro model

    Ribosome Binding of a Single Copy of the SecY Complex: Implications for Protein Translocation

    Get PDF
    The SecY complex associates with the ribosome to form a protein translocation channel in the bacterial plasma membrane. We have used cryo-electron microscopy and quantitative mass spectrometry to show that a nontranslating E. coli ribosome binds to a single SecY complex. The crystal structure of an archaeal SecY complex was then docked into the electron density maps. In the resulting model, two cytoplasmic loops of SecY extend into the exit tunnel near proteins L23, L29, and L24. The loop between transmembrane helices 8 and 9 interacts with helices H59 and H50 in the large subunit RNA, while the 6/7 loop interacts with H7. We also show that point mutations of basic residues within either loop abolish ribosome binding. We suggest that SecY binds to this primary site on the ribosome and subsequently captures and translocates the nascent chain

    Ribosome Binding of a Single Copy of the SecY Complex: Implications for Protein Translocation

    Get PDF
    The SecY complex associates with the ribosome to form a protein translocation channel in the bacterial plasma membrane. We have used cryo-electron microscopy and quantitative mass spectrometry to show that a nontranslating E. coli ribosome binds to a single SecY complex. The crystal structure of an archaeal SecY complex was then docked into the electron density maps. In the resulting model, two cytoplasmic loops of SecY extend into the exit tunnel near proteins L23, L29, and L24. The loop between transmembrane helices 8 and 9 interacts with helices H59 and H50 in the large subunit RNA, while the 6/7 loop interacts with H7. We also show that point mutations of basic residues within either loop abolish ribosome binding. We suggest that SecY binds to this primary site on the ribosome and subsequently captures and translocates the nascent chain

    Structure of the CLC-1 chloride channel from Homo sapiens.

    No full text
    corecore